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An account is given of recent progress in establishing an exact formula for the
critical scaling function of self-avoiding loops in two dimensions, weighted by
their area.
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INTRODUCTION

This talk is about some recent exact results on crossover scaling functions
in two dimensions. Although much of the work of Michael Fisher has
rightly emphasised the importance of explaining complicated physics in
terms of simple theories, he has also, from early on, derived many elegant
results for exactly solvable models.

The work I will be discussing is contained in two recent papers by
Richard, Guttmann, and Jensen (1) and myself, (2) although some of the ideas
relate to older work of Parisi and Sourlas, (3) which has very recently been
put on a much more systematic footing by Brydges and Imbrie (4) (see
Imbrie’s contribution to this meeting.) However, it really all goes back to a
seminal paper of Leibler, Singh, and Michael Fisher, (5) who were concerned
with the statistical mechanics of vesicles, biological closed membranes.
Although much of this paper was devoted to the effects of local curvature-
dependent terms in the energy on the overall shape of the vesicle, these
authors also considered, through Monte Carlo simulations and scaling



analysis, a very simplified model for two-dimensional vesicles, in which the
wall corresponds to a self-avoiding random loop. The ensemble of all such
loops of a fixed perimeter is weighted by the pressure difference p between
the inside and outside, which couples to the internal area of the loop (the
2d analog of the volume.)

The generating function for this ensemble is

Z= C
rooted loops

xL e−pA

where x is the monomer fugacity. The sum over rooted loops, i.e., those
which pass through a given point, is to eliminate overcounting. When
p=0, Z is known to have a critical point at x=xc, at the which the mean
loop size diverges. Leibler, Singh, and Fisher (5) argued that for p > 0 there
is a crossover phenomenon, from self-avoiding loops to branched polymers,
as illustrated in Fig. 1, and described by a crossover scaling function (6)

OAP=−
“

“p
ln Z=OLP2n Y(pOLP2n)

or equivalently

Zsing=phF((xc − x) p−f)

This scaling function must satisfy a number of constraints:

• whenp=0,N(L) ’ La − 2(x−1
c )L, sothatZ ’ (xc − x)1 − a andF(u) ’ uh/f

with h/f=1 − a;

• we expect that OAP ’ OLP2n, which implies f=1/2n, where 1/n is
the fractal dimension of the loop.

The new result (1, 2) is an exact form for the scaling function:

F(u)=
AiŒ(u)
Ai(u)

L

A
p

Fig. 1. The crossover from self-avoiding loops to branched polymers as the pressure
difference p is increased.
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where

Ai(u) 3 F
.

−.

e iut+it3/3 dt

is the Airy function.
Moreover, it may be argued (2) that f=2

3 and h=1
3 , which implies the

previously conjectured values aSAL=1
2 , nSAL=3

4 .

q-ALGEBRAIC APPROACH

Richard, Guttmann, and Jensen (1) pointed out that simpler solvable
problems (staircase polygons, convex polygons, etc.) have generating func-
tions Z(x, q — e−p) which satisfy q-algebraic equations. For example, stair-
case polygons (see Fig. 2), which consist of a pair of non-intersecting
random walks which may only move to the right or upwards on a square
lattice2, have a generating function satisfying

2 These are nothing but the simplest case of the so-called vicious walker problem introduced
by M. E. Fisher in 1984. (7)

Z(x, q)=
qx2

1 − qx
+

x+Z(x, q)
1 − qx

Z(qx, q)

These authors assume that ZSAP(x, q) satisfies some equation

C
n

C
k1,..., kn

ak1,..., kn
D

n

j=1
Z(qkjx, q)=b(x, q)

with a scaling solution Z ’ (1 − q)h × F((xc − x)(1 − q)−f) and also that
h=1

3 , f=2
3 . An asymptotic scaling analysis then shows that F satisfies a

Riccati equation

FŒ(u)=aF(u)2 − bu

with solution F(u) 3 (d/du) ln Ai(u).
Although the central assumption here might seem rather strong, there

is no doubt that the result is correct. The formula predicts specific values
for the universal ratios of the moments OAnP/OAPn, which are related to
derivatives of Z with respect to p, evaluated at p=0. Richard et al. (1)

enumerated self-avoiding loops on the lattice (polygons) up to very large
values of the perimeter, and were able to verify the predictions for these
ratios to a spectacular degree of accuracy.
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Fig. 2. A staircase polygon, consisting of two mutually avoiding directed random walks.

FIELD-THEORETIC APPROACH

The emergence of the Airy function may, however, be understood
from a completely different argument, in which the crossover from self-
avoiding loops to branched polymers is analyzed from each end, using
methods of continuum field theory.

Self-Avoiding Loops

These may be described by the n Q 0 limit of a theory of a (complex)
O(n) field fF, in which each (oriented) loop carries a factor n. If we imagine
a unit current around each loop flowing around each loop in the sense of
its orientation, the corresponding current density is represented in the con-
tinuum by the U(1) current Jm ’ (1/2i)(fg

“mf − f “mfg)
The area of a given loop may be written as

A=F |x1 − x2 | d(y1 − y2) dy1 dy2

=FF Gls(r1 − r2) Jl(r1) Js(r2) d2r1 d2r2

where Gls is the Green function for a U(1) gauge field A. This is a well-
known result: in a 2d gauge theory, there is a linear potential between
opposite charges, so the expectation value of a Wilson loop obeys a strict
area law.

Thus we can write the area-weighted partition function in field-
theoretic language as

Z=Oe−pAPSAL=Oe−`p > Jl
Al d2rPSAL, A

where the gauge field is integrated over with weight exp(−> FlsFls d2r).
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This is just the n Q 0 limit of the Abelian Higgs model (n=2 would be
the Landau–Ginzburg model for a superconductor.) However, this case has
special features:

• at n=0 there are no vacuum corrections to the gauge field pro-
pagator Gls (like the ‘‘quenched’’ approximation in lattice gauge theories)

• A couples to a conserved current J.

Together, these imply that the gauge coupling p is not renormalized. Its
RG equation is

dp/da=2p

to all orders, so p flows to a fixed point at ., where the irrelevant variable
p−1 has the RG eigenvalue − 2.

Branched Polymers in d Dimensions

There are many different microscopic models of branched polymers,
all of which seem to fall into the same universality class. From a field
theory point of view, following Parisi and Sourlas, (3) it is useful to visualise
branched polymers as tree Feynman diagrams, which, as is well known,
correspond to the solution of classical field equations. For example

(−N2+m2
0) k=h+u3k2+ · · ·

which would generate the trees, shown in Fig. 3, with each segment corre-
sponding to the Green function of − N2+m2

0, each branching vertex carry-
ing factor u3, and each branch tip a factor h. The solution of this equation
may be written using a functional delta-function:

F Dw Dk e > w(−N2
k+VŒ(k)) d dr (Jacobian)

where

Jacobian=F Dq̄ Dq e > q̄(−N2+Vœ(k)) q ddr,

h

h

u3

Fig. 3. Tree Feynman diagrams as a model for branched polymers.
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an integral over grassman fields. However, this model does not include self-
avoidance: it turns out to be sufficient to incorporate repulsion into the
end-points of the tree by letting h Q h+i dh(r) and averaging over dh(r)
with weight exp(−(1/D) > (dh)2 ddr)). After rescaling w, the action is of the
form

S=
1
D

F (w(−N2k+VŒ(k)) − w2+q̄(−N2+Vœ(k)) q) ddr

It was the remarkable observation of Parisi and Sourlas (3) that this is
supersymmetric. This is seen by supplementing the d commuting euclidean
coordinates with anticommuting coordinates (h, h̄), such that > dh̄ dh=0
and > dh̄ dh h̄h=1, and defining the superfield Y(r, h̄, h) — k(r)+h̄q(r)+
hq̄(r)+h̄hw(r) In this notation S may be written

S=
1
D

F (Y(−N2
SS) Y+V(Y)) ddr dh dh̄

where N2
SS=N2+4“

2/“h “h̄.
This has several important properties:

• it exhibits SUSY under rotations which leave r2+hh̄ invariant.

• it exhibits dimensional reduction: correlation functions whose argu-
ments are restricted to a d − 2-dimensional subspace are same as those for a
non-susy theory in d − 2 dimensions, whose action is

SŒ=
1
D

F 11
2

k(−N2) k+V(k)2 dd − 2r

The basic mathematical reason for this is the identity > d2r dh dh̄ f(r2+hh̄) 3

> d(r2) fŒ(r2)=−f(0)]

• D has dimension (length)−2 (not affected by loop corrections,
otherwise susy would be broken,) so that

• under the RG, dD/da=2D, so that D flows to ., where D−1 is
irrelevant. (It is a classic example of a dangerously irrelevant variable: (8) it
cannot be set equal to zero.)

On the basis of comparing the above two formulations of the problem, it is
natural to conjecture that

D 3 p,
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so that, for d=2 in particular,

Z(x, p)sing=OY(0)Psusy=OkPSŒ=(“/“x) ln Z1

where

Z1=F e (xk − V(k))/p dk

For this to have required scaling form phF((xc − x) p−f), xk − V(k)
must have a simple critical point at x=xc. The simplest choice is xk −
V(k)=−(xc − x) k+1

3 k3. After rotating the contour and rescaling k Q

p1/3k, we find the required scaling form with h=1
3, f=2

3 and F(u)=
AiŒ(u)/Ai(u).

COMMENTS AND PUZZLES

• This is probably the first known example of an exact scaling func-
tion of two thermodynamic variables for a nontrivial isotropic critical
point;

• from this point of view, the Airy function arises as a partition func-
tion in d=0, with no apparent connection to a q-algebraic structure
(however, it should be possible to see whether expected corrections to
scaling are consistent with such a structure);

• Brydges and Imbrie (4) have shown an exact mapping between a par-
ticular model of branched polymers in d dimensions and a repulsive gas (at
negative fugacity) in d − 2 dimensions [using susy!]. Its scaling limit is ik3

field theory, also known as the Yang–Lee theory, whose critical properties
were first analyzed by M. E. Fisher. (9) That the hard core gas at negative
fugacity should be in the same universality class as the Yang–Lee singularity
has been studied by Lai and Fisher. (10)

• the above argument can be generalized to higher order critical points
V 3 kk+2: for p Q 0 these lead to new candidates for multicritical points of
self-avoiding loops, whose physical interpretation as yet obscure (the
exponents for k=2 do not correspond to those for the theta-point.)

• however, the scaling dimensions do coincide with Flory values, and
with those found by Saleur (1992) on the basis of a presumed twisted N=2
susy for the d=2 CFTs describing these theories.

• these arguments give yet another ‘‘derivation’’ of the result n=3
4 for

self-avoiding walks in two dimensions—it is high time this was made
rigorous.
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